CLICK HERE to see the repo
The jupyter notebook features in this repo shows how to use VGG16 (pretrained on ImageNet) for a new classification task. It involves using a new dataset and replacing the classifier (the fully connected layers at top of the network) with a new classifier. The base of the network (convolutional base) is frozen and the new classifier is trained using the new dataset.
import tensorflow.keras.backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Flatten
from tensorflow.keras import optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
from sklearn.metrics import classification_report
import numpy as np
import pickle
import matplotlib.pyplot as plt
from tensorflow.keras.applications.vgg16 import VGG16
K.clear_session()
dataset = "../data_set"
trdata = ImageDataGenerator(rescale= 1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range = 0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
Using the ImageDataGenerator to load data from the train, validation and test sets
traindata = trdata.flow_from_directory(directory=dataset+"/train",
target_size = (224,224),
color_mode = 'rgb',
class_mode = 'binary',
batch_size=20,
shuffle=True,
seed=42)
valdata = ImageDataGenerator(rescale= 1./255)
validatedata = valdata.flow_from_directory(directory=dataset+"/validate",
target_size = (224,224),
color_mode = 'rgb',
class_mode = 'binary',
batch_size=20)
tsdata = ImageDataGenerator(rescale= 1./255)
testdata = tsdata.flow_from_directory(directory=dataset+"/test",
target_size = (224,224),
color_mode = 'rgb',
class_mode = 'binary',
batch_size=20,
shuffle=False)
label_map = (traindata.class_indices)
print(label_map)
vggmodel = VGG16(weights="imagenet", include_top='False', input_shape =(224,224,3))
mymodel = Sequential()
for layer in vggmodel.layers[:-4]:
print(layer.name)
mymodel.add(layer)
del vggmodel
for layer in mymodel.layers:
print(layer.name, layer.trainable)
layer.trainable = False
Adds on 2 fully-connected layers and the final output layer is a single neuron with a sigmoid activation function
This model is going to be used to perform binary classification so a sigmoid is used as the final layer.
The final output is a probability, so a range of 0-1 for the desired class.
new_top = Sequential()
new_top.add(Flatten())
new_top.add(Dense(1024, activation = 'relu'))
new_top.add(Dense(512, activation ='relu'))
new_top.add(Dense(1, activation ='sigmoid'))
for layer in new_top.layers:
print(layer)
mymodel.add(new_top)
mymodel.summary()
mymodel.compile(optimizers.Adam(lr=0.0001), loss='binary_crossentropy',
metrics =['accuracy'])
The fit_generator provides a way to configure additional training settings.
history = mymodel.fit_generator(generator=traindata, steps_per_epoch=137,
validation_data= validatedata, validation_steps=35,
epochs=15,
verbose=2)
Uses pickle (Python object serialization) to store training information as a binary file.
with open('vgg16/vgg16_p1_trainHistoryDict', 'wb') as file_pi:
pickle.dump(history.history, file_pi)
Loss and accuracy graphs of the model on the training and validation sets are plotted.
plt.plot(history.history['accuracy'],linestyle='--', marker='o')
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'],linestyle='--', marker='o')
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
Shows how a classification report can be plotted using model training history.
Uses the scikit-learn classification_report() function
K.clear_session() #seems to help prevent a random memoryleak
y_pred = mymodel.predict(testdata, verbose=1)
y_bool =[]
for data in y_pred:
if data <0.5:
y_bool.append(0)
else:
y_bool.append(1)
report = classification_report(testdata.classes, y_bool, output_dict=False)
print(report)