Using VGG16 Pre-trained on ImageNet



CLICK HERE to see the repo

Using VGG16 pretrained on ImageNet for a new task by replacing the classifier at the top of the network

The jupyter notebook features in this repo shows how to use VGG16 (pretrained on ImageNet) for a new classification task. It involves using a new dataset and replacing the classifier (the fully connected layers at top of the network) with a new classifier. The base of the network (convolutional base) is frozen and the new classifier is trained using the new dataset.

In [7]:
import tensorflow.keras.backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Flatten
from tensorflow.keras import optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
from sklearn.metrics import classification_report
import numpy as np
import pickle
import matplotlib.pyplot as plt
from tensorflow.keras.applications.vgg16 import VGG16
In [8]:
K.clear_session()

dataset = "../data_set"

Set up Keras ImageDataGenerator:

  • rotation_range adds a random rotation within the range of +/- the value.
  • width_shift_range a random horizontal shift of the image within the range of +/- the value.
  • height_shift_range a random vertical shift of the image within the range of +/- the value.
  • shear_range a random stretch of the image at an angle within the range of +/- the value.
  • horizontal_flip a allows random flips of the image about the horizontal axis
  • fill_mode some augmentations create empty spaces, fill mode determines how we fill these spaces. "nearest" repeats the pixels and the edge of the space.
In [9]:
trdata = ImageDataGenerator(rescale= 1./255,
                            rotation_range=40,
                            width_shift_range=0.2,
                            height_shift_range=0.2,
                            shear_range = 0.2,
                            zoom_range=0.2,
                            horizontal_flip=True,
                            fill_mode='nearest')

Using the ImageDataGenerator to load data from the train, validation and test sets

In [10]:
traindata = trdata.flow_from_directory(directory=dataset+"/train",
                                       target_size = (224,224), 
                                       color_mode = 'rgb',                                       
                                       class_mode = 'binary', 
                                       batch_size=20,
                                       shuffle=True,
                                       seed=42)
Found 2738 images belonging to 2 classes.
In [11]:
valdata = ImageDataGenerator(rescale= 1./255)
validatedata = valdata.flow_from_directory(directory=dataset+"/validate",
                                      target_size = (224,224),
                                      color_mode = 'rgb',
                                      class_mode = 'binary', 
                                      batch_size=20)
Found 686 images belonging to 2 classes.
In [30]:
tsdata = ImageDataGenerator(rescale= 1./255)
testdata = tsdata.flow_from_directory(directory=dataset+"/test",
                                      target_size = (224,224),
                                      color_mode = 'rgb',
                                      class_mode = 'binary', 
                                      batch_size=20,
                                     shuffle=False)
Found 856 images belonging to 2 classes.

Loading VGG16 model with weights after being pre-trained on ImageNet

In [13]:
label_map = (traindata.class_indices)
print(label_map)
vggmodel = VGG16(weights="imagenet", include_top='False', input_shape =(224,224,3))
{'not_scorpion': 0, 'scorpion_pepper': 1}

Creating a new model from VGG16 using the Keras Sequential model API

  1. Create blank model
  2. Add the all layers from VGG16 except the layers at the top of the network (the classifier)
  3. Ensure layers are frozen .i.e. not trainable
In [14]:
mymodel = Sequential()

for layer in vggmodel.layers[:-4]:
    print(layer.name)
    mymodel.add(layer)
    
del vggmodel

for layer in mymodel.layers:
    print(layer.name, layer.trainable)
    layer.trainable = False
input_1
block1_conv1
block1_conv2
block1_pool
block2_conv1
block2_conv2
block2_pool
block3_conv1
block3_conv2
block3_conv3
block3_pool
block4_conv1
block4_conv2
block4_conv3
block4_pool
block5_conv1
block5_conv2
block5_conv3
block5_pool
block1_conv1 True
block1_conv2 True
block1_pool True
block2_conv1 True
block2_conv2 True
block2_pool True
block3_conv1 True
block3_conv2 True
block3_conv3 True
block3_pool True
block4_conv1 True
block4_conv2 True
block4_conv3 True
block4_pool True
block5_conv1 True
block5_conv2 True
block5_conv3 True
block5_pool True

Adding a classifier to the top of the new model

Adds on 2 fully-connected layers and the final output layer is a single neuron with a sigmoid activation function
This model is going to be used to perform binary classification so a sigmoid is used as the final layer.
The final output is a probability, so a range of 0-1 for the desired class.

In [15]:
new_top = Sequential()
new_top.add(Flatten())
new_top.add(Dense(1024, activation = 'relu'))
new_top.add(Dense(512, activation ='relu'))
new_top.add(Dense(1, activation ='sigmoid'))
In [16]:
for layer in new_top.layers:
    print(layer)
<tensorflow.python.keras.layers.core.Flatten object at 0x00000281D4184390>
<tensorflow.python.keras.layers.core.Dense object at 0x00000281D4184470>
<tensorflow.python.keras.layers.core.Dense object at 0x00000281D41AAA20>
<tensorflow.python.keras.layers.core.Dense object at 0x00000281D4238DA0>
In [17]:
mymodel.add(new_top)
mymodel.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
sequential_1 (Sequential)    (None, 1)                 26216449  
=================================================================
Total params: 40,931,137
Trainable params: 26,216,449
Non-trainable params: 14,714,688
_________________________________________________________________

Configure model for training.

  • optimizer the backpropagation optimization algorithm being used. Adam is typically used with deep neural networks
  • loss is the loss function. For a binary classifcation function we use the binary_crossentropy loss function
  • metrics the list of metrics to monitor during training
In [18]:
mymodel.compile(optimizers.Adam(lr=0.0001), loss='binary_crossentropy',
                        metrics =['accuracy'])

The fit_generator provides a way to configure additional training settings.

  • generator is for the training data generator
  • steps_per_epoch typically determined by the number of samples in the data set divided by the batch size for the training data generator
  • validation_data is for the validation data generator
  • validation_steps similar to steps_per_epoch, determined by the number of samples in the data set divided by the batch size for the validation data generator
  • epochs The number of epoch to train the model for. An epoch is a single iteration over all of the training data
  • verbose The level of detail about training information output during training
In [19]:
history = mymodel.fit_generator(generator=traindata, steps_per_epoch=137, 
                      validation_data= validatedata,  validation_steps=35, 
                      epochs=15,
                      verbose=2)
Epoch 1/15
137/137 - 55s - loss: 0.3932 - accuracy: 0.8218 - val_loss: 0.1743 - val_accuracy: 0.9344
Epoch 2/15
137/137 - 44s - loss: 0.2167 - accuracy: 0.9156 - val_loss: 0.1358 - val_accuracy: 0.9329
Epoch 3/15
137/137 - 45s - loss: 0.1631 - accuracy: 0.9361 - val_loss: 0.0854 - val_accuracy: 0.9694
Epoch 4/15
137/137 - 45s - loss: 0.1389 - accuracy: 0.9434 - val_loss: 0.0683 - val_accuracy: 0.9752
Epoch 5/15
137/137 - 45s - loss: 0.1084 - accuracy: 0.9554 - val_loss: 0.0854 - val_accuracy: 0.9592
Epoch 6/15
137/137 - 45s - loss: 0.1088 - accuracy: 0.9547 - val_loss: 0.2722 - val_accuracy: 0.9038
Epoch 7/15
137/137 - 45s - loss: 0.1064 - accuracy: 0.9565 - val_loss: 0.0382 - val_accuracy: 0.9854
Epoch 8/15
137/137 - 45s - loss: 0.1055 - accuracy: 0.9547 - val_loss: 0.0455 - val_accuracy: 0.9883
Epoch 9/15
137/137 - 45s - loss: 0.0775 - accuracy: 0.9693 - val_loss: 0.0459 - val_accuracy: 0.9825
Epoch 10/15
137/137 - 45s - loss: 0.1004 - accuracy: 0.9595 - val_loss: 0.0420 - val_accuracy: 0.9810
Epoch 11/15
137/137 - 45s - loss: 0.0905 - accuracy: 0.9602 - val_loss: 0.0247 - val_accuracy: 0.9942
Epoch 12/15
137/137 - 45s - loss: 0.0780 - accuracy: 0.9708 - val_loss: 0.0461 - val_accuracy: 0.9825
Epoch 13/15
137/137 - 45s - loss: 0.0869 - accuracy: 0.9671 - val_loss: 0.0753 - val_accuracy: 0.9738
Epoch 14/15
137/137 - 45s - loss: 0.0776 - accuracy: 0.9693 - val_loss: 0.0284 - val_accuracy: 0.9883
Epoch 15/15
137/137 - 46s - loss: 0.0783 - accuracy: 0.9730 - val_loss: 0.0643 - val_accuracy: 0.9679

Uses pickle (Python object serialization) to store training information as a binary file.

In [20]:
with open('vgg16/vgg16_p1_trainHistoryDict', 'wb') as file_pi:
     pickle.dump(history.history, file_pi)

Plot the model accuracy and loss during training

Loss and accuracy graphs of the model on the training and validation sets are plotted.

In [21]:
plt.plot(history.history['accuracy'],linestyle='--', marker='o')
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'],linestyle='--', marker='o')
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

Generating a classification report

Shows how a classification report can be plotted using model training history.

Uses the scikit-learn classification_report() function

In [31]:
K.clear_session() #seems to help prevent a random memoryleak

y_pred = mymodel.predict(testdata, verbose=1)

y_bool =[]
for data in y_pred:
    if data <0.5:
        y_bool.append(0)
    else:
        y_bool.append(1)
43/43 [==============================] - 4s 97ms/step
In [32]:
report = classification_report(testdata.classes, y_bool, output_dict=False)
print(report)
              precision    recall  f1-score   support

           0       1.00      0.92      0.96       428
           1       0.93      1.00      0.96       428

    accuracy                           0.96       856
   macro avg       0.96      0.96      0.96       856
weighted avg       0.96      0.96      0.96       856

In [ ]: